Neue Case Study: Wie seowerk SEO und Generative Engine Optimization erfolgreich verbindet

Suchmaschinenoptimierung verändert sich grundlegend. Neben klassischen Google-Rankings gewinnen KI-gestützte Suchsysteme wie Google AI Overviews, ChatGPT und Perplexity zunehmend an Bedeutung. Für Unternehmen stellt sich damit die Frage, wie SEO im KI-Zeitalter langfristig funktioniert.

In einer neuen Case Study zeigt seowerk, wie die eigene SEO-Agentur seit über zwölf Jahren nachhaltige Suchmaschinenoptimierung betreibt und diesen Ansatz seit 2023 gezielt um Generative Engine Optimization (GEO), KI-Optimierung und SEO für ChatGPT erweitert hat. Die Case Study dokumentiert, welche technischen, inhaltlichen und strategischen Maßnahmen notwendig sind, um sowohl in klassischen Suchmaschinen als auch in generativen KI-Antworten sichtbar zu bleiben.

Im Mittelpunkt stehen dabei:

  • klassisches, hochwertiges SEO als Fundament,
  • strukturierte Daten und technische Maschinenlesbarkeit,
  • Content-Strategien für KI-Suche und AI Overviews,
  • sowie der Aufbau von Autorität und Entitätssignalen für Suchmaschinen und Large Language Models.

Im Mittelpunkt stehen dabei:

  • klassisches, hochwertiges SEO als Fundament,
  • strukturierte Daten und technische Maschinenlesbarkeit,
  • Content-Strategien für KI-Suche und AI Overviews,
  • sowie der Aufbau von Autorität und Entitätssignalen für Suchmaschinen und Large Language Models.

Die Case Study basiert ausschließlich auf realen, überprüfbaren Ergebnissen und ist als sachliche Dokumentation aus der Praxis konzipiert.

Zur Case Study:
[SEO und Generative Engine Optimization bei seowerk – Case Study]

Kostenlose Erstberatung! 

*“ zeigt erforderliche Felder an

Dieses Feld dient zur Validierung und sollte nicht verändert werden.
Dieses Feld wird bei der Anzeige des Formulars ausgeblendet
Die Suche nach AGI führt KI Forschung an ihre Grenzen, verbindet technische Ambitionen mit ethischen Risiken und stellt Gesellschaften vor die Frage, wie universelle Maschinenintelligenz kontrolliert, ausgerichtet und sinnvoll in soziale und wirtschaftliche Strukturen eingebettet werden kann.
Weiterlesen
Mit der Transformer Architektur beginnt eine neue Ära, in der KI nicht nur versteht, sondern schöpft und dank Attention Mechanismen Texte, Bilder und Ideen generiert und so den Weg für moderne LLMs und kreative Anwendungen bereitet.
Weiterlesen
Der Deep-Learning-Boom entsteht aus Datenflut, GPU-Power und neuen Netzarchitekturen und entfesselt eine KI-Revolution, die Forschung und Industrie grundlegend verändert und den Übergang von symbolischer Logik zu selbstlernenden Systemen beschleunigt.
Weiterlesen
Nach Jahren des Stillstands erlebten neuronale Netze in den 1980ern mit Backpropagation eine Wiedergeburt. Mehrschichtige Netze lernten komplexe Muster automatisch, übertrafen Expertensysteme und legten den Grundstein für das spätere Deep Learning.
Weiterlesen
In den 1980er Jahren feierten Expertensysteme die KI kurzzeitig als wirtschaftlichen Erfolg. Hohe Wartungskosten, begrenzte Domänen und teure Hardware führten jedoch zum Scheitern und lösten den Zweiten KI Winter aus.
Weiterlesen
Ab etwa 1974 erlebt die symbolische KI eine Phase tiefer Ernüchterung. Die kombinatorische Explosion und gescheiterte Generalisierung aus Spielzeugwelten führen zu massiven Kürzungen der Fördergelder, ersten Rückzügen der Forschung und zum Ersten KI Winter.
Weiterlesen
Teil 15 – In den 1960er Jahren dominiert die symbolische KI das Feld und erhebt die regelbasierte Manipulation von Symbolen zum Kern der Intelligenz. Programme wie Logic Theorist und GPS befeuern den Glauben, menschliches Denken vollständig in formale Strukturen übersetzen zu können.
Weiterlesen
Teil 14: Der Dartmouth Workshop von 1956 definiert erstmals ein eigenes Forschungsfeld und gibt der Disziplin ihren Namen. Die Vision einer programmierbaren Intelligenz vereint führende Köpfe und markiert den Beginn einer Ära, geprägt von Ehrgeiz, Optimismus und bahnbrechenden Ideen.
Weiterlesen
Teil 13 – In den frühen Nachkriegsjahren verschmelzen biologische Modelle, kybernetische Ideen und elektronische Architektur zu einem neuen Verständnis von Intelligenz. McCulloch, Pitts, Wiener und von Neumann schaffen die Grundlagen, auf denen moderne KI Systeme technisch und theoretisch aufbauen.
Weiterlesen
Teil 12 – Alan Turing lieferte 1936 mit der Turing Maschine die abstrakte Definition des Algorithmus und klärte die Grenzen der Berechenbarkeit.
Weiterlesen
Am Vorabend der modernen Informatik spitzte sich die Frage zu, was Berechnung überhaupt ist. Die Krise der Mathematik machte sichtbar, dass eine abstrakte Definition des Algorithmus fehlte und damit der letzte theoretische Schlüssel zur späteren KI Entwicklung weltweit.
Weiterlesen
Teil 10 – Im 19. Jahrhundert entsteht durch die Erforschung von Reflexbögen und Nervenzellen erstmals ein mechanistisches Verständnis des Gehirns. Diese biologische Perspektive liefert die Blaupause künstlicher Neuronen und prägt die Grundlagen späterer Modelle lernfähiger KI-Systeme.
Weiterlesen
Kontakt
Leichte Sprache
crossmenu linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram